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Abstract This paper continues the analysis on the Lengyel–Epstein reaction-
diffusion system of the chlorite-iodide-malonic acid-starch (CIMA) reaction for the
rich Turing structures. The steady state structures, especially the double bifurcation
one, and their stability and multiplicity are studied by the use of Lyapunov–Schmidt
reduction technique and singularity theory. Numerical simulations are presented to
support our theoretical studies. The results show that the richer stationary Turing pat-
terns heavily rely both on the size of the reactor and on the effective diffusion rate in
the CIMA reaction.

Keywords Lengyel–Epstein system · Turing bifurcation · Stability ·
Lyapunov–Schmidt procedure · Normal form

1 Introduction

Pattern formation is a classical issue of interest in many branches of nonlinear science,
such as physics, chemistry, biology, and social disciplines. One of the most well-known
mechanism for pattern formation is the diffusion-driven or Turing instability suggested
in Turing’s seminal paper “The Chemical Basis of Morphogenesis” [1], which shows
that diffusion can destabilize a homogeneous steady state and result in the formation
of nonhomogeneous stationary structures. After then the mechanism has been utilized
to explain the pattern formation in fields ranging from economics [2], biology and
chemistry [3] to astrophysics [4,5], where the most fruitful area of investigation is
likely to be biology.
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Despite the profound impact of Turing’s idea on theoretical developments in pattern
formation, the Turing’s prediction was not verified experimentally until 1990, nearly
40 years after the original theory, by De Kepper et al. on the chlorite-iodide-malonic
acid-starch (CIMA) reaction in an open unstirred gel reactor [6]. They observed the
formation of spotty structure which represents a significant breakthrough for one
of the most fundamental ideas in morphogenesis and biological pattern formation.
Subsequently, considering that three of the five reactants remain nearly constant in the
CIMA reaction, Lengyel and Epstein [7,8] developed a simple two-variable model,
i.e. so-called Lengyel–Epstein model, which takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= �u + a − u − 4uv

1 + u2 , x ∈ �, t > 0,

∂v

∂t
= σ

[

c�v + b

(

u − uv

1 + u2

)]

, x ∈ �, t > 0,

∂u/∂ν = 0, ∂v/∂ν = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �,

(1.1)

where� is a bounded domain in Rn , with a smooth boundary ∂�; u(x, t) and v(x, t)
denote the dimensionless concentrations of iodide (I−) and chlorite (ClO−

2 ), respec-
tively; a and b are the parameters related to the feed concentrations; c is the ratio of the
diffusion coefficients; σ > 1 is a rescaling parameter depending on the concentration
of the starch, enlarging the effective diffusion ratio to σc. It is always assumed that
all parameters a, b, c and σ are positive constants.

After the successful evidence [6], a number of important experimental and numer-
ical works [9–13] and rigorous mathematical investigations [14–18] focus on the
system (1.1). When the spatial domain is one-dimensional, Yi et al. [14], choosing b
as the bifurcation parameter, performed a detailed Hopf bifurcation analysis for both
the ODE and PDE models, and investigated the direction of the Hopf bifurcation and
the stability of the bifurcating spatially homogeneous periodic solutions. In [15], they
further considered the global asymptotical behavior of constant steady state when
the feeding rate of iodide a is small, and showed that for small spatial domains, all
solutions eventually converge to a spatially homogeneous and time-periodic solution.
In [16], taking the feeding rate a of iodide as the bifurcation parameter, the authors
proved that the PDE system (1.1) undergoes a sequence of bifurcations generating
spatially nonhomogeneous time-periodic solutions and steady state solutions, which
strongly suggested the richness of spatiotemporal dynamics.

Certainly, more original and systematic works on mathematical aspects were pro-
posed by Ni and Tang [17,18]. In [17], they studied the non-existence of Turing patterns
and the Turing instability, and showed that Turing structures form only if the parameter
a (related to the feed concentrations), the size of the reactor � (reflected by its first
eigenvalue), or the “effective” diffusion rate d = c/b are suitable large. Furthermore,
they argued that if the parameter a lies in a suitable range, then the system possesses
non-constant steady states for large d. For the better description of the structures, in
the one-dimensional case, they [18] further considered the global bifurcation of the
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non-constant steady states arising from the simple bifurcation (i.e. the case d j �= dk

in [18]) by taking the “effective” diffusion rate d as bifurcation parameter.
This paper continues the analytic works of [18] with the goal of revealing a new

or rich solution structure and achieving a deeper understanding of the Turing pat-
terns operating in the system (1.1). We still view the effective diffusion rate d as the
bifurcation parameter, and maintain the basic hypothesis on the system parameters,
i.e. condition (H) below, which results in that no spatiotemporal pattern exists for the
bifurcation parameter d. Thus, our main purpose is only to study Turing structures,
especially bifurcating from the double eigenvalue (i.e. the case d j = dk) by using
Lyapunov–Schmidt technique and singularity theory [19], and further determine the
stability and multiplicity of the bifurcating non-constant steady state solutions, in par-
ticular the simple bifurcation solutions obtained in [18]. The results enrich and perfect
the earlier works of [18] in order to seeking a complete mathematical investigations of
the Turing patterns for the Lengyel–Epstein system (1.1), and are of practical signifi-
cance for the researches on pattern formation in complex reaction-diffusion systems.
We believe that our theoretical studies of spatially nonhomogeneous steady states are
new advance, and until now little or no results is known about the effect of diffusion
on such double bifurcation structure.

To complement the previous works, we firstly recall some results of [17,18] in the
next section, and present the basic assumption (H) on the system parameters. Because
no Hopf bifurcation occurs based on such condition (H) for the bifurcation parameter
d, we just go on with the discussion of Turing bifurcation in Sect. 3, whose key point
rests on the double bifurcation. In Sect. 4, we further consider the stability and the
bifurcation direction of the bifurcating non-constant steady states, especially stationary
structures illustrated in [18], deriving a more detailed description of the Turing patterns
for the Lengyel–Epstein system. Finally, Sect. 5 is devoted to numerical simulations
for confirming the analytic results of the previous sections.

2 Preliminary

In the present section, we describe the results in [17,18] for the later discussions. By
introducing the new variable d = c/b, δ = σb and α = a/5, the system (1.1) in the
one-dimensional interval � = (0, l) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ∂2u

∂x2 + 5α − u − 4uv

1 + u2 , x ∈ (0, l), t > 0,

∂v

∂t
= δ

(

d
∂2v

∂x2 + u − uv

1 + u2

)

, x ∈ (0, l), t > 0,

∂u

∂x
= ∂v

∂x
= 0, x = 0, l, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ (0, l).

(2.1)
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Clearly, system (1.1) and (2.1) both has a unique spatially homogeneous steady
state (u∗, v∗) = (α, 1 + α2). As in [17], we denote

f (u, v) = 5α − u − 4uv

1 + u2 , g(u, v) = u − uv

1 + u2 ,

f0 := fu(u
∗, v∗) = 3α2 − 5

1 + α2 < 3, f1 := fv(u
∗, v∗) = − 4α

1 + α2 < 0,

g0 := gu(u
∗, v∗) = 2α2

1 + α2 > 0, g1 := gv(u
∗, v∗) = − α

1 + α2 < 0,

and still maintain the basic hypothesis

(H) 0 < 3α2 − 5 < δα

which leads to that

(i) no Hopf bifurcation occurs based on the work [17] for taking d as the bifurcation
parameter,

(ii) the system (1.1) is an activator-inhibitor model where it is commonly assumed
that the inhibitor v inhibits the production of activator u, and u activates itself
and the inhibitor.

(iii) the unique constant solution (u∗, v∗) of (1.1) is diffusion-free stable.

Let 0 = λ0 < λ1 < λ2 < · · · be the sequence of eigenvalues for the elliptic
operator −� subject to the Neumann boundary condition on �, where each λi has
multiplicity mi ≥ 1. If λ1 < f0, then we define iα = iα(α,�) (1 ≤ iα < ∞) to be
the largest positive integer such that λi < f0 for 1 ≤ i ≤ iα . Thus, we can set

d̃ = min
1≤i≤iα

di , di = α

1 + α2

λi + 5

λi ( f0 − λi )
. (2.2)

Then the non-existence of nonconstant steady states and Turing instability of (u∗, v∗)
are demonstrated as follows.

Theorem 2.1 [17] There is a constant d0 = d0(a, λ1) > 0 such that the system (1.1)
does not admit a nonconstant solution for 0 < d < d0.

Lemma 2.2 [17] Assume (H) hold. If λ1 ≥ f0, or λ1 < f0 and 0 < d < d̃ , then the
constant steady state (u∗, v∗) is asymptotically stable. If λ1 < f0 and d > d̃ , then
(u∗, v∗) is unstable, and hence Turing unstable.

When the constant solution (u∗, v∗) becomes unstable, the Turing structures or
the non-constant steady states are naturally concerned for d > d̃. Hence, in the one-
dimensional interval � = (0, l), Jang et al. [18] give a detailed description of the
Turing structures.

For the domain � = (0, l), it is well known that the elliptic operator −� sub-
ject to the Neumann boundary condition possesses eigenvalues λ j = (π j/ l)2 ( j =
0, 1, 2, . . .) whose corresponding normalized eigenfunctions are given by
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φ j =

⎧
⎪⎪⎨

⎪⎪⎩

1√
l
, j = 0,

√
2

l
cos

π j

l
x, j > 0.

Then the set {φ j }, j = 0, 1, 2, . . . forms a complete orthonormal basis in L2(0, l).

Theorem 2.3 [18] Suppose j is a positive integer such that λ j < f0 and d j �= dk for
any integer k �= j . Then (d j , u∗, v∗) is a bifurcation point of system (2.1) with respect
to the curve (d, u∗, v∗), d > 0.

There is a one-parameter family of non-trivial solutions �(s) = (d(s), u(s), v(s))
of the system (2.1) for |s| sufficiently small, where d(s), u(s), v(s) are continuous
functions, d(0) = d j and

u j (s) = u∗ + sφ j + o(s), v j (s) = v∗ + sb jφ j + o(s),

b j = (λ j − f0)/ f1 > 0. (2.3)

The steady state solution set of system (2.1) consists of two curves (d, u∗, v∗) and
�(s) in a neighborhood of the bifurcation point (d j , u∗, v∗).

Let J denote the closure of the non-trivial steady state solution set of system (2.1),
and � j the connected component of J ∪ {(d j , 0, 0)} to which the trivial solution
{(d j , 0, 0)} belongs. In a neighborhood of the bifurcation point the curve � j is char-
acterized by the eigenfunction φ j . The detailed analysis on the bifurcating curve � j

far from the equilibrium is shown in the following theorem.

Theorem 2.4 [18] Under the same assumption of Theorem 2.3, the projection of the
bifurcation curve � j on the d−axis contains (d j ,∞).

If d > d̃ and d �= dk for any integer k > 0, then the system (2.1) possesses at least
one non-constant positive solution.

We remark that there is no contradiction between Theorems 2.1 and 2.4 or 2.3 since
it is easy to check that d̃ > d0. Moreover, Theorem 2.3 shows that all (d j , u∗, v∗),
j = 1, 2, . . . , iα are the simple bifurcation points on the basis of assumption every
d j �= dk for any integer k �= j . However, for some d j = dk ( j �= k) in all
(d j , u∗, v∗), j = 1, 2, . . . , iα , litter is known about the bifurcation solution. There-
fore, our main contribution lies in the rigorous discussion for this case described in
the next section.

3 Turing bifurcation when some d j = dk for j �= k

In this section, still using the effective diffusion rate d as the bifurcation parameter, we
investigate the case that d j , j = 1, 2, . . . , iα satisfy some d j = dk for j �= k ∈ [1, iα].
For this case, from (2.2) we can confirm that d j = dk for j �= k if and only if

α2 = 5 + λ∗
jk

3 − λ∗
jk
>

5

3
, λ∗

jk = λ j + λk + 1

5
λ jλk, (3.1)
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Fig. 1 The curve is described by (2.2) with d3 = d5 = 2.3227 for j = 3, k = 5 and l = 13.3, leading
to α = 2.7034 in (3.1), and d1 = 14.8809, d2 = 4.1980, d3 = 2.3227, d4 = 1.8768, d5 = 2.3227, d6 =
39.8377

which is the basic assumption for the present section and leads to d j = dk = − 5g1

λ jλk
,

verified in Fig. 1. Moreover, we can obtain λ∗
jk = f0 < 3, which means λ1 =

(π/ l)2 < ι∗ < 1, ι∗ = 5(
√
( j2 + k2)2 + 12 j2k2/5 − j2 − k2)/(2 j2k2), that is to

say, the size of the reactor l must be greater than π for d j = dk, j �= k. From (3.1),
we also notice that in all d j , j = 1, 2, . . . , iα , greater than or equal to three quantities
must be unequal, and there only exists a pair of quantities to be equal such as d j = dk

for some j �= k.
For other d j such that d j �= dk (any k �= j), the bifurcation solution forms are same

as (2.3) and the solutions can occur global behaviors according to [18] or Sect. 2.
However, for such d j satisfying d j = dk ( j �= k), it is very necessary to point out
that the classical bifurcation theory (for example [20]) used in [18] can not be applied
because the hypothesis for the Crandall and Rabinowitz theorem is no longer satisfied.
Therefore, the Lyapunov–Schmidt reduction technique and singularity theory [19] are
the powerful tools to analyze how the bifurcation occurs.

Now we turn to discuss the d j satisfying d j = dk for j �= k, which is our major
concern. Without loss of generality, we always assume j < k in the situation d j = dk

for j �= k.
For analytical convenience, we introduce the new variables

ū = u − α, v̄ = v − 1 − α2.

In order to conserve notation, we drop the bars over the quantities and still denote ū, v̄
as u, v. Taking these into consideration, system (2.1) can be written as
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂t

(
u
v

)

= L

(
u
v

)

+ N (u, v), x ∈ (0, l), t > 0,

∂u

∂x
= ∂v

∂x
= 0, x = 0, l, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ (0, l),

where the linear part

L

(
u

v

)

=
(
�+ f0 f1
δg0 δ(d�+ g1)

) (
u

v

)

, � = ∂2

∂x2 (3.2)

and the nonlinear part

N (u, v) =
[

− (u + α)(v + 1 + α2)

1 + (u + α)2
+ α + 1 − α2

1 + α2 u + α

1 + α2 v
](4

δ

)

. (3.3)

Let X = {(u, v) : u, v ∈ C2[0, l], u′ = v′ = 0 at x = 0, l}, Y = C0[0, l] ×
C0[0, l], and define the inner product of Y by

〈U1,U2〉 = 〈u1, u2〉L2(0,l) + 〈v1, v2〉L2(0,l), U1 = (u1, v1), U2 = (u2, v2) ∈ Y,

and the smooth mapping F : X × R → Y by

F(w, λ) = Lw + N (w), w = (u, v)�, λ = d − d j ,

where Lw and N (w) are respectively given by (3.2) and (3.3). It is obvious that
F(0, λ) = 0. Therefore, for obtaining the non-constant steady states of (2.1), we only
need to consider the non-zero solutions of the elliptic problem

F(w, λ) = 0, x ∈ (0, l) (3.4)

with the boundary condition

∂w

∂x
= 0, at x = 0, l.

Now we take λ instead of d as the main bifurcation parameter for the further discus-
sions.

The linearized operator of system (3.4) evaluated at (w, λ) = (0, 0) is

L0 =
(
�+ f0 f1
δg0 δ(d j�+ g1)

)

, � = ∂2

∂x2 .
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Let (φ,ψ) ∈ N (L0) and φ = ∑∞
i=0 aiφi , ψ = ∑∞

i=0 biφi . Then we have

∞∑

i=0

Bi

(
ai

bi

)

φi = 0, Bi =
(

f0 − λi f1
δg0 δ(g1 − d jλi )

)

. (3.5)

On the basis of d j = dk for j �= k, we obtain that

N (L0) = span{� j ,�k}, N (L∗
0) = span{�∗

j ,�
∗
k}, (3.6)

where

�i =
(

1

bi

)

φi , bi = λi − f0

f1
> 0,

�∗
i = 1

1 + bi b∗
i

(
1

b∗
i

)

φi , b∗
i = b̄∗

i

δ
, b̄∗

i = λi − f0

g0
< 0, i = j, k,

normalized so that 〈�i ,�
∗
m〉 = δim, i,m = j, k. It is easy to verify that 1 + bi b∗

i >

0, i = j, k, which will be used in the later discussions.
Similarly, the other two eigenvalues of L0 corresponding to d j , dk are, respectively,

μ j = f0 − λ j + δ(g1 − d jλ j ) = δg1(5 + λk)(1 + b j b∗
j )

λk
< 0,

μk = f0 − λk + δ(g1 − dkλk) = δg1(5 + λ j )(1 + bkb∗
k )

λ j
< 0,

with eigenfunctions

� j =
(−b∗

j

1

)

φ j , �k =
(−b∗

k

1

)

φk,

and co-eigenfunctions

�∗
j = 1

1 + b j b∗
j

(−b j

1

)

φ j , �
∗
k = 1

1 + bkb∗
k

(−bk

1

)

φk,

normalized so that 〈�∗
i , �m〉 = δim, i,m = j, k.

We set the decompositions Y = N (L0) ⊕ R(L0) and X = N (L0) ⊕ X1, where
N (L0) is given by (3.6) and X1 = X ∩ R(L0). Define the operator P on Y by

PU = 〈U,�∗
j 〉� j + 〈U,�∗

k〉�k .

Then R(P) = N (L0), and it is easy to check that P2 = P which implies that P is
the projection onto N (L0). Thus, Q = I − P is a projection onto R(L0) in Y . These
result in that the system (3.4) is determined by a pair of equations
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P F(w, λ) = 0, QF(w, λ) = 0. (3.7)

According to the decomposition of X , we rewrite w ∈ X as the form w =
s� j + τ�k + W , where (s, τ ) ∈ R2 and W ∈ X1. By the second equation of
(3.7), it follows from the implicit theorem that there exists a unique smooth function
W (s, τ, λ) := W (s� j + τ�k, λ) such that W (0, 0, 0) = 0 and QF(s� j + τ�k +
W (s, τ, λ), λ) = 0 near the origin. It is easy to see that W (0, 0, λ) ≡ 0 and then
Wλ(0, 0, 0) = Wλλ(0, 0) = · · · = 0. Substituting W (s, τ, λ) into the first equation of
(3.7), we obtain

PF(s� j + τ�k + W (s, τ, λ), λ) = 0.

Let us write L = L0 + δλM , where M =
(

0 0

0 ∂2

∂x2

)

. Then, according to the definition

of P , the zeros of (3.4) are in one-to-one correspondence with the zeros of the reduced
equation

(
ζ(s, τ, λ)

ϑ(s, τ, λ)

)

:=
(〈�∗

j , H(s� j + τ�k + W (s, τ, λ), λ)〉
〈�∗

k , H(s� j + τ�k + W (s, τ, λ), λ)〉
)

= 0, (3.8)

where H(w, λ) := δλMw+ N (w), and so (3.4) has the solution asw = s� j +τ�k +
W (s� j + τ�k, λ)when s, τ and λ are solved by (3.8). Then we only need to consider
the solvability of (3.8). It follows from [21] that the Eq. (3.4) with non-flux boundary
conditions inherits a symmetric structure, and the above reduced form is rewritten as

(
ζ(s, τ, λ)

ϑ(s, τ, λ)

)

=
(

sp(s̄, τ̄ , λ)+ sk−1τ jβ(s̄, τ̄ , λ)

τq(s̄, τ̄ , λ)+ skτ j−1γ (s̄, τ̄ , λ)

)

, s̄ = s2, τ̄ = τ 2. (3.9)

Due to H(0, λ) = 0, it is easy to see that ζ00n = ϑ00n = 0, n = 1, 2, . . .. However,
the key of the further calculations for the Taylor coefficients of ζ(s, τ, λ) andϑ(s, τ, λ)
at the origin lies in the derivatives of W , which are determined by the second equation
of (3.7). Clearly, we have Ws(0, 0, 0) = 0 and Wτ (0, 0, 0) = 0, which lead to ζ100 =
ϑ100 = ζ010 = ϑ010 = 0.

By straightforward calculations, the second derivatives of H at the origin are
given as

∂2 H

∂si∂λ
= δM�i ,

∂2 H

∂si∂sm
= d2 N (�i ,�m), i,m = j, k (3.10)

for s j = s, sk = τ , where

d2 N (�i ,�m) = 1

(1 + α2)2

[
(α2 − 1)(�i1�m2 +�i2�m1)

+ 2α(3 − α2)�i1�m1

] (
4

δ

)

. (3.11)

123



J Math Chem (2012) 50:2374–2396 2383

According to (3.8)–(3.11), we omit the details of computations here and obtain

p001 = 〈�∗
j , δM� j 〉 = −λ j b j b̄∗

j

1 + b j b∗
j
> 0, q001 = 〈�∗

k , δM�k〉 = −λkbk b̄∗
k

1 + bkb∗
k
> 0,

β0 = 〈�∗
j , d2 N (� j ,�k)〉 =

⎧
⎪⎨

⎪⎩

(4 + b̄∗
j )e3√

2l(1 + b j b∗
j )
, k = 2 j,

0, k �= 2 j,

(3.12)

γ0 = 1

2
〈�∗

k , d2 N (� j ,� j )〉 =

⎧
⎪⎨

⎪⎩

(4 + b̄∗
k )e1

2
√

2l(1 + bkb∗
k )
, k = 2 j,

0, k �= 2 j,

where

e1 = 2[(α2 − 1)b j + α(3 − α2)]
(1 + α2)2

= ē1

2α(1 + α2)
, ē1 := 5 + λ j − (1 + λ j )α

2,

e2 = 2[(α2 − 1)bk + α(3 − α2)]
(1 + α2)2

= ē2

2α(1 + α2)
, ē2 := 5 + λk − (1 + λk)α

2,

e3 = e1 + e2

2
= ē3

4α(1 + α2)
, ē3 := ē1 + ē2,

4 + b̄∗
j = 20

5 + λk
> 0, 4 + b̄∗

k = 20

5 + λ j
> 0.

In order to seek the third order Taylor coefficients of ζ(s, τ, λ) and ϑ(s, τ, λ), the
third derivatives of H at the origin are exhibited below.

H300 = 1

2
d2 N (� j ,Wss)+ 1

3!d3 N (�3
j ),

H030 = 1

2
d2 N (�k,Wττ )+ 1

3!d3 N (�3
k),

H210 = 1

2
d2 N (�k,Wss)+ d2 N (� j ,Wsτ )+ 1

2
d3 N (�2

j ,�k), (3.13)

H120 = 1

2
d2 N (� j ,Wττ )+ d2 N (�k,Wsτ )+ 1

2
d3 N (� j ,�

2
k),

H201 = 1

2
d Hλ(Wss)+ d2 N (� j ,Wsλ),

where Hi jk := 1
i ! j !k!

∂ i+ j+k

∂si ∂τ j ∂λk H(0, 0), the second Fréchet derivative of N is given as
(3.11) and the third derivative is shown as
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d3 N (�i ,�m,�n)

= 1

(1 + α2)3

[
2α(3 − α2)(�i1�m1�n2 +�i1�m2�n1 +�i2�m1�n1)

+ 6(α4 − 6α2 + 1)�i1�m1�n1

](
4

δ

)

.

Moreover, from the second equation of (3.7), the second derivatives of W at the origin
are determined by

Wsi sm = −L−1
0 Qd2 N (�i ,�M ), Wsiλ = −L−1

0 QδM�i , i,m = j, k (3.14)

for s j = s, sk = τ .
From (3.14), we know that

L0Wss = −Qd2 N (� j ,� j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−e1

l

[ (
4
δ

)

+ 〈cos
2π j

l
x

(
4
δ

)

, �∗
k 〉�k

]
, k = 2 j,

−e1

l
(1 + cos

2π j

l
x)

(
4
δ

)

, k �= 2 j.

Let Wss = ∑∞
i=0

(
ai

bi

)

φi , then we get

L0Wss =
∞∑

i=0

Bi

(
ai

bi

)

φi ,

where Bi is given by (3.5). Thus we obtain

Wss =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−e1

l

[
B−1

0

(
4
δ

)

+ μ−1
k

〈

cos
2π j

l
x

(
4
δ

)

, �∗
k

〉

�k

]
, k = 2 j,

−e1

l

(

B−1
0 + B−1

2 j cos
2π j

l
x

) (
4
δ

)

, k �= 2 j,

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− e1

5lg1

[ (
0
5

)

+ 5(ζ jk − 5)

ζ jk(1 + bkb∗
k )

(−b∗
k

1

)

cos
πk

l
x
]
, k = 2 j,

− e1

5lg1

[ (
0
5

)

+ λk

3(4λ j − λk)

(
16d jλ j

5 + 4λ j

)

cos
2π j

l
x
]
, k �= 2 j,

(3.15)
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where we use that
δ − 4bk

μk
= ζ jk − 5

g1ζ jk
, ζ jk := (5 + λ j )(1 + bkb∗

k ). As the argument

above, by the Fourier expansion for Wττ and Wsτ , we have

Wττ = − e2

5lg1

[(0

5

)

+ λ j

3(4λk − λ j )

(
16d jλk

5 + 4λk

)

cos
2πk

l
x
]
. (3.16)

Wsτ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− e3

5lg1

[
λ+

(
4d jλ j+k
5 + λ j+k

)

cos
π( j + k)

l
x + 5(ζk j − 5)

ζk j (1 + b j b∗
j )

(
−b∗

j
1

)

cos
π j

l
x
]
, k = 2 j,

− e3

5lg1

[
λ+

(
4d jλ j+k
5 + λ j+k

)

cos
π( j + k)

l
x + λ−

(
4d jλk− j
5 + λk− j

)

cos
π(k − j)

l
x
]
, k �= 2 j,

(3.17)

where λ̄+:= 1

(λ j − λ j+k)(λk − λ j+k)
, λ̄−:= 1

(λ j − λk− j )(λk − λk− j )
, λ+ = λ̄+λ j

λk, λ− = λ̄−λ jλk,
δ − 4b j

μ j
= ζk j − 5

g1ζk j
.

Combining (3.13) and (3.15)–(3.17), straightforward calculations yield the Taylor
coefficients of ζ(s, τ, λ) and ϑ(s, τ, λ) as follows. It is obvious that

q010 = 〈�∗
k , H030〉 =

〈

�∗
k ,

1

2
d2 N (�k,Wττ )

〉

+
〈

�∗
k ,

1

3!d3 N (�3
k)

〉

,

where the first and second term of q010 are respectively given by

q1
010 = (4 + b̄∗

k )�̄k j

40lα2(1 + α2)2(1 + bkb∗
k )
, q2

010 = (4 + b̄∗
k )�̄k

40lα2(1 + α2)2(1 + bkb∗
k )
,

�̄k j := 5 + λk − (1 + λk)α
2

3(4λk − λ j )

[

(α2 − 1)(120λk−5λ j+8λ jλk)+160α2(3 − α2)

1 + α2

]

,

�̄k := 15α2[(α2 − 3)λk + α2 − 11].

Therefore, we obtain

q010 = q1
010 + q2

010 = (4 + b̄∗
k )q̄010

40lα2(1 + α2)2(1 + bkb∗
k )
, q̄010 = �̄k j + �̄k . (3.18)

In the same way, we have

q100 = 〈�∗
k , H210〉 = q1

100 + q2
100 + q3

100, (3.19)
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where

q1
100 = − e1(4 + b̄∗

k )�

2lg1(1 + α2)2(1 + bkb∗
k )
, � = α2 − 1,

q2
100

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− e3(4 + b̄∗
2 j )q̃

2
100

10lg1(1 + α2)2(1 + b2 j b∗
2 j )
, q̃2

100 = �̃ j + �̃ jk j , k = 2 j,

− e3(4 + b̄∗
k )q̄

2
100

10lg1(1 + α2)2(1 + bkb∗
k )
, q̄2

100 = λ̄+�̄ j ( j+k)k + λ̄−�̄ j (k− j)k, k �= 2 j,

�̃ j := 1

5

[
(α2 − 1)(25 + 9λ j )+ 36α(3 − α2)d jλ j

]
,

�̃imn := 5(ζmi − 5)

ζmi (1 + bi b∗
i )

[
(α2 − 1)(1 − bnb∗

i )− 2α(3 − α2)b∗
i

]
,

�̄imn := (α2 − 1)[5λi + (5 + 2λi )λm]λn + 40α2(3 − α2)

1 + α2 λm,

q3
100 = (4 + b̄∗

k )q̄
3
100

60lα2(1 + α2)2(1 + bkb∗
k )
, q̄3

100 = 2�̄ j + �̄k,

p010 = 〈�∗
k , H120〉 = p1

010 + p2
010 + p3

010, (3.20)

where

p1
010 = − e2(4+b̄∗

j )�

2lg1(1+α2)2(1+b j b∗
j )
,

p2
010 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− e3(4+b̄∗
j ) p̃

2
010

10lg1(1+α2)2(1+b j b∗
j )
, p̃2

010 = �̃ j− 27
8 �+�̃ jkk, k = 2 j,

− e3(4+b̄∗
j ) p̄

2
010

10lg1(1+α2)2(1+b j b∗
j )
, p̄2

010 = λ̄+�̄k( j+k) j+λ̄−�̄k(k− j) j , k �= 2 j,

p3
010 = (4 + b̄∗

j ) p̄
3
010

60lα2(1 + α2)2(1 + b j b∗
j )
, p̄3

010 = 2�̄k + �̄ j ,

and

p100 = 〈�∗
j , H300〉 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4 + b̄∗
j ) p̃100

40lα2(1 + α2)2(1 + b j b∗
j )
, p̃100 = ē1(10�+ �̃k j j )+ �̄ j , k = 2 j,

(4 + b̄∗
j ) p̄100

40lα2(1 + α2)2(1 + b j b∗
j )
, p̄100 = �̄ jk + �̄ j , k �= 2 j.

(3.21)
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Table 1 ( j, k) = (1, 2): normal forms (ζ̃ , ϑ̃)

Case p̃ q̃

(1) −s(τ + ε5λ
2) τ (ε3τ

2 + ε4λ)+ ε2s2

(2) −s(τ + ε1λ) τ(ε3τ
2 + κλ2)+ ε2s2

(3) −s(ε5τ
2 + ρλ) τ(ε3τ

2 + ε4λ)+ ε2s2

(4) −s(τ + ε1λ) τ(ε3τ
2 + ε4λ)+ ε5s4 + ςs2λ

(5) −s(τ + ε1λ) τ(ε5τ
4 + ε4λ)+ ε2s2

According to [21], there are two different cases such as ( j, k) = (1, 2) and j >
1, k > j for the solvability of (3.8). Here we only deal with the former case below to
present a complete analysis based on (3.18)–(3.21).

For the case ( j, k) = (1, 2), we have α2 = 5 + 5λ1 + 4
5λ

2
1

3 − 5λ1 − 4
5λ

2
1

from (3.1). Noting that

the fact λ∗
12 < 3 implies λ1 < ι∗, with the value ι∗ determined numerically to be about

ι∗ = 0.5514. Therefore, the further discussions are based on λ1 = (π/ l)2 ∈ (0, ι∗).
From [21], if p001q001β0γ0q010 �= 0, then the reduced Eq. (3.9) is equivalent to the

normal form
( −s(τ + ε1λ)

τ(ε3τ 2 + ε4λ)+ ε2s2

)

(3.22)

where

ε1 = −sgnp001, ε2 = −sgn(β0γ0), ε3 = sgnq010, ε4 = sgnq001.

For p001, q001, β0, γ0, q010 = 0, five different normal forms summarized in Table 1
are possible, and the conditions for the normal forms are shown in Tables 2 and 3.

In view of (3.22), Tables 1 and 2, we further give the detailed discussions. Obviously,
for our model, it is always valid that p001 > 0 and q001 > 0, which lead to ε1 =
−1 and ε4 = 1. According to (3.12) and (3.18), we find that β0, γ0, q010 have the
same sign with ē3, ē1, q̄010, respectively, which are not equal to zero simultaneously.
Moreover, ē3 = 0, ē1 = 0, and q̄010 = 0 are all λ

′
1s equations, and then by a simple

monotonicity analysis, it is readily found that 0 < ι0 < ι1 < ι2 < ι3 < ι∗, shown
in Fig. 2, where ι1, ι2 is the corresponding root of ē3 = 0, ē1 = 0, and ι0, ι3 are
the roots of q̄010 = 0. The value of ι0, ι1, ι2, ι3 can be determined numerically to be
0.0355, 0.2366, 0.2762, 0.3908, respectively. Thus combining Fig. 2 with (3.22), we
have the following result.

Theorem 3.1 If λ1 �= ιi , i = 0, 1, 2, 3, then the reduced problem (3.8) is equivalent
to the normal form

{−s(τ − λ) = 0,

τ (ε3τ
2 + λ)+ ε2s2 = 0,
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Table 2 ( j, k) = (1, 2): conditions for the normal forms of Table 1

Case Zero Non-zero ε5 = sgn(.)

(1) p001 p002 −p002

(2) q001 q002, q010 p2
001 + q002β

2
0 –

(3) β0 p010, p010q001 − p001q010 −p010

(4) γ0 D4, D5 −D4

(5) q010 q020 q020

Fig. 2 The zeros of ē1, ē3 and q̄010

where ε3 =
{+, λ1 ∈ (0, ι0) ∪ (ι3, ι∗),

−, λ1 ∈ (ι0, ι3) and ε2 =
{−, λ1 ∈ (0, ι1) ∪ (ι2, ι∗),

+, λ1 ∈ (ι1, ι2).
Case 1 λ1 = ι1 i.e. β0 = 0

It is clear that γ0 > 0 from Fig. 2 and ē3 = 0 from (3.12), leading to Wsτ = 0 and
p2

010 = 0. Thus, by (3.20) and (3.18), we obtain

p010 = (4 + b̄∗
1) p̂010

4lα2(1 + α2)2(1 + b1b∗
1)
< 0,

p̂010 = (5α4 − 19α2 − 4)λ1 + 2α4 − 27α2 − 5 < 0,

q010 = (4 + b̄∗
2)q̂010

24lα2(1 + α2)2(1 + b2b∗
2)
< 0,

q̂010 = 4(4α4 − 17α2 − 5)λ1 + 4α4 − 69α2 − 25 < 0.

Then ρ ≈ −0.5662 determined by numerical computation, and

p010q001 − p001q010 = −4λ3
1[3(5 + 4λ1) p̂010 − 2(5 + λ1)q̂010]

15l f1g0α2(1 + α2)2(1 + b1b∗
1)(1 + b2b∗

2)
> 0.
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Table 3 The parameters
appearing in Tables 1 and 2 κ = q002β

2
0

p2
001|q010|

ρ = − p001

|p010|
∣
∣
∣
q010

q001

∣
∣
∣

ς = −D5

∣
∣
∣

q001

p001 D4

∣
∣
∣

1
2

D4 = β0γ100 − p100q100

D5 = β0γ001 − p100q001 − p001q100

Therefore, according to Tables 1 and 2, we have the following result for λ1 = ι1.

Theorem 3.2 If λ1 = ι1, then the reduced problem (3.8) is equivalent to the normal
form

{−s(τ 2 + ρλ) = 0,

τ (−τ 2 + λ)+ s2 = 0.

Case 2 λ1 = ι2 i.e. γ0 = 0

For this case, it is readily apparent that ē1 = 0, which results in ē3 = ē2 =
3λ1(1 − α2) < 0,Wss = 0 and q1

100 = 0. Thus, from (3.21) and (3.19), we have

p100 = 3(4 + b̄∗
1)

8l(1 + α2)2(1 + b1b∗
1)

[(α2 − 3)λ1 + α2 − 11],

q100 = 3(4 + b̄∗
2)

8lα2(1 + α2)2(1 + b2b∗
2){(

5

ζ21
− 1

5

)

(α2 − 1)2λ1 + 2α2
[
2(α2 − 3)λ1 + α2 − 11

]}

.

In view of Tables 1 and 2, it is very natural to further estimate D4 and D5. By the
Fourier expansion as above, from (3.14) we have

Wsλ = −λ j b2
j

g0(1 + b j b∗
j )

2

(−b∗
j

1

)

φ j .

Then we have

γ001 = 〈�∗
2, d2 N (�1,Wsλ)〉 = −λ1b2

1(α
2 − 1)(4 + b̄∗

2)√
2lg0(1 + α2)2(1 + b1b∗

1)(1 + b2b∗
2)
.
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Due to Wss = 0, from the second equation of (3.7) we find that Wsss satisfies

L0Wsss(0, 0, 0) = −Qd3 N (� j ,� j ,� j )

= − 6e4

l
√

2l

[

cos
3π j

l
x

(
4

δ

)

+
〈

3cos
π j

l
x

(
4

δ

)

, �∗
j

〉

� j

]

,

e4 = 1

4(1 + α2)2
[(α2 − 3)λ j + α2 − 11].

Thus, for ( j, k) = (1, 2) we get

Wsss(0, 0, 0)

= − 6e4

5l
√

2lg1

{
1

10

(
36d1λ1

5 + 9λ1

)

cos
3π

l
x + 15(ζ21 − 5)

ζ21(1 + b1b∗
1)

(−b∗
1

1

)

cos
π

l
x

}

.

(3.23)

It is straightforward to calculate that

d4 N (�i ,�m,�n,�l)

= 6

(1 + α2)4

[
(α4 − 6α2 + 1)(�i1�m1�n1�l2 +�i1�m1�n2�l1

+�i1�m2�n1�l1 +�i2�m1�n1�l1)

−4α(α4 − 10α2 + 5)�i1�m1�n1�l1

](
4

δ

)

. (3.24)

Then combining (3.23) and (3.24), we obtain

γ100 =
〈

�∗
2,

1

3!d2 N (�1,Wsss)+ 1

4!d4 N (�4
1)

〉

= 4 + b̄∗
2

4(
√

2l)3α(1 + α2)3(1 + b2b∗
2)

{
[(α2 − 3)λ1 + α2 − 11](α2 − 1)

(
11

5
− 15

ζ21

)

− 4[(α4 − 6α2 + 1)λ1 + α4 − 18α2 + 5]
}
.

Therefore, we have

D4 = 6(4 + b̄∗
1)(4 + b̄∗

2)D̂4

5(8lα)2(1 + α2)4(1 + b1b∗
1)(1 + b2b∗

2)
< 0,

D5 = 6λ3
1 D̂5

25l f1g0α2(1 + α2)2(1 + b1b∗
1)(1 + b2b∗

2)
> 0,

D̂4 = 10λ1(α
2 − 1)[(α4 − 6α2 + 1)λ1 + α4 − 18α2 + 5]

− [(α2 − 3)λ1 + α2 − 11][(34α4 − 98α2 + 4)λ1 + 15α2(α2−11)] < 0,

D̂5 = 5α2(45 + 12λ1)[(α2−3)λ1 + α2−11] + 4λ1(5 + λ1)(9α
4−28α2−1) < 0.
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ς = − 6(5 + 4λ1)λ
3
1 D̂5

25 f1g0α(1 + b2b∗
2)

∣
∣
∣
∣

5 + 4λ1

30(5 + λ1)D̂4

∣
∣
∣
∣

1
2

< 0.

Theorem 3.3 If λ1 = ι2, then the reduced problem (3.8) is equivalent to the normal
form

{−s(τ − λ) = 0,

τ (−τ 2 + λ)+ s4 + ςs2λ = 0.

Remark 3.4 For the case λ1 = ι0 or ι3, i.e. q010 = 0, we further need to consider
the term q020, but the calculation of which is more tedious and omitted here. The
preliminary analysis shows that q020 �= 0 for λ1 = ι0 or ι3, and so the reduced
problem (3.8) is equivalent to the normal form

{−s(τ − λ) = 0,

τ (±τ 4 + λ)+ s2 = 0.

Therefore, we have a complete analysis for the case ( j, k) = (1, 2), which means
that no further equivalence can exist, that is to say, (3.8) is solvable in this case. But
for the case j > 1, k > j , one can obtain a detailed result for the specific j and k
from [21] and (3.18)–(3.21), which is omitted here.

In a word, the discussions above illustrate that the reduced problem (3.8) can be
solved by equivalence. Thus, for some d j = dk ( j �= k), the original system (2.1) has
the solution as the following form

(
u

v

)

=
(

u∗

v∗

)

+ s

(
1

b j

)

φ j + τ

(
1

bk

)

φk + W (s, τ, λ), (3.25)

when (s, τ ), close to (0, 0), is the local zero of (3.8), and here W (s, τ, λ) satis-
fies W (0, 0, λ) = 0, Wλ(0, 0, 0) = Wλλ(0, 0) = · · · = 0, Ws(0, 0, 0) = 0 and
Wτ (0, 0, 0) = 0. The solution form is characterized by two distinct modes such as φ j

and φk , and what we discuss here is suitable for any double bifurcation problem, not
just the first one. In particular, if for some integer j , we have

α2 = 5 + λ∗
j ( j+1)

3 − λ∗
j ( j+1)

in (3.1), then the double bifurcation is the first bifurcation achieved at d j = d j+1.

4 Stability of bifurcation solutions

In this section, we focus on the stability of the simple and double bifurcation solutions
given by (2.3) and (3.25). For convenience of the following discussion, we denote
dm := d̃ = min1≤i≤iα di in (2.2).
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Theorem 4.1 Assume that j �= m. Then L0 has a positive eigenvalue, and both simple
and double bifurcation solutions are unstable.

Proof Recall that the linearized operator of the steady state system of (2.1) evaluated
at (d j , u∗, v∗) is given by

L0 =
(
�+ f0 f1
δg0 δ(d j�+ g1)

)

, � = ∂2

∂x2 .

In the following, we begin to discuss the eigenvalue of L0. Suppose that μ is an
eigenvalue of L0 with a corresponding eigenfunction (φ(x), ψ(x)). Then we have

∂2φ

∂x2 + ( f0 − μ)φ + f1ψ = 0, δd j
∂2ψ

∂x2 + δg0φ + (δg1 − μ)ψ = 0.

By the Fourier expansion φ = ∑∞
i=0 aiφi , ψ = ∑∞

i=0 biφi , we obtain

∞∑

i=0

(
f0 − λi − μ f1

δg0 δ(g1 − d jλi )− μ

) (
ai

bi

)

φi = 0.

It follows that the eigenvalues of L0 are given by

μ2 − Pi (d j )μ+ Qi (d j ) = 0, i = 0, 1, 2, . . . ,

where

Pi (d j ) = f0 − λi + δ(g1 − d jλi ) = f0 + δg1 − (1 + δd j )λi < 0 (4.1)

by the condition (H), and

Qi (d j ) = δ[( f0 − λi )(g1 − d jλi )− f1g0] = δ[d jλi (λi − f0)

+ α

1 + α2 (λi + 5)]. (4.2)

When j �= m, we find Qm(d j ) < 0 from (4.2), and then L0 has a positive eigenvalue.
Thus, according to the perturbation theory of linearized operator, the bifurcation solu-
tions described by (2.3) and (3.25) for j �= m are unstable. The proof is completed.

��
Lemma 4.2 Suppose that j = m and d j �= dk for any integer k �= j . Then 0 is a
simple eigenvalue of L0 with the largest real part, and all the other eigenvalues of L0
lie in the left half complex plane.

Proof For j = m, it follows from [18] that

N (L0) = span{�m} and N (L∗
0) = span{�∗

m},
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where �m,�
∗
m are shown in (3.6) and

〈�m,�
∗
m〉 = 1 > 0,

which implies �m /∈ R(L0) by the Fredholm alternative, and so 0 is a simple eigen-
value of L0. From (4.1) and (4.2), we have that for all i, Pi (dm) < 0 and

Qm(dm) = 0, Qi (dm) > 0, i = 0, 1, 2, . . . ,m − 1,m + 1, . . . .

Hence, 0 is a simple eigenvalue of L0 with the largest real part, and all the other
eigenvalues of L0 lie in the left half complex plane. Thus we complete the proof. ��

For the case d j such that d j �= dk (any k �= j), in the same way as Sect. 3,
we take the decompositions Y = N (L0) ⊕ R(L0) and X = N (L0) ⊕ X1, where
N (L0) = span{� j } and X1 = X ∩ R(L0). We define the projection P on Y by

PU = 〈U,�∗
j 〉� j .

and set w ∈ X in the form w = s� j + W , where s ∈ R and W ∈ X1. Following
from the implicit theorem, W (s, λ) := W (s� j , λ) defined near the origin is uniquely
solvable from the second equation of (3.7). It is obvious that Ws(0, 0) = 0 and
W (0, λ) ≡ 0, leading to Wλ(0, 0) = Wλλ(0, 0) = · · · = 0. Substituting W (s, λ) into
the first equation of (3.7), we obtain

PF(s� j + W (s, λ), λ) = 0. (4.3)

As in Sect. 3, owing to the projection P , (4.3) can be rewritten in the following reduced
equation

h(s, λ) = 〈�∗
j , H(s� j + W (s, λ), λ)〉 = 0. (4.4)

Thus the zeros of (4.4) are corresponding to the simple bifurcation solutions of (2.1)
shown in (2.3).

Obviously, hs(0, 0) = 0 from Ws(0, 0) = 0 and hλ(0, 0) = hλλ(0, 0) = · · · = 0
from H(0, λ) = 0. Here, we notice that

Wss(0, 0) = − e1

5lg1

[(
0
5

)

+ 5( f0 − λ j )

3(4λ2
j + 25λ j − 5 f0)

(
16d jλ j

5 + 4λ j

)

cos
2π j

l
x

]
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Fig. 3 The constant solution is asymptotically stable for δ = 9.7607, α = 2.7034, l = 13.3 and d =
1.75 < d̃ with the initial values u0(x) = u∗ + 0.2cos(5πx), v0(x) = v∗ + 0.6cos(5πx)

according to (3.14). Furthermore, we can get

hλs(0, 0) = 〈�∗
j , δM� j 〉 = −λ j b j b̄∗

j

1 + b j b∗
j
> 0, hss(0, 0) = h(4)s (0, 0) = 0,

hsss(0, 0) = 〈�∗
j ,

1

2
d2 N (� j ,Wss)+ 1

3!d3 N (�3
j )〉

= 4 + b̄∗
j

8lα2(1 + α2)2(1 + b j b∗
j )

{
ē1

3(4λ2
j + 25λ j − 5 f0)

[

(α2 − 1)(16λ2
j + 125λ j

+8λ j f0 − 5 f0)+ 32α2(3 − α2)

1 + α2 (5 + λ j )

]

+ 3α2[(α2 − 3)λ j + α2 − 11]
}

.

(4.5)

Therefore, combining Lemma 4.2 with page 320 of [19], we have the following stability
result for the simple bifurcation solution (u j (s), v j (s)), j = m in (2.3), where the
stability theorem in [23] is not valid.

Theorem 4.3 Suppose that j = m and d j �= dk for any integer k �= j . If hsss(0, 0) <
0 (> 0), then the bifurcation solution (u j (s), v j (s)) is stable (unstable) for both s < 0
and s > 0.

Remark 4.4 The above discussion yields no information about the direction and num-
ber of simple bifurcation solutions. By [22], we know that λ′

s(0) = 0 for hss(0, 0) = 0,
and then no transcritical bifurcation occurs. When hsss(0, 0) �= 0 in (4.5), (4.4) is
equivalent to sgn(hsss(0, 0))s3 +λs from [19], and then a pitchfork bifurcation occurs
for every simple bifurcation point in our system (2.1), specifically speaking, subcriti-
cal bifurcation for hsss(0, 0) > 0 and supercritical bifurcation for hsss(0, 0) < 0. In
particular, for the subcritical case in the work [18], the bifurcation curve finally turn
back based on Theorems 2.1 and 2.4.

Remark 4.5 If hsss(0, 0) < 0 (> 0), then (2.1) has two non-constant steady state
solutions when λ > 0 (< 0) and no solutions when λ < 0 (> 0). For hsss(0, 0) =
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Fig. 4 The spatially nonhomogeneous steady states for δ = 9.7607, α = 2.7034, l = 13.3 and d = 2.0 >
d4. Top the initial values u0(x) = u∗ + 0.2cos(4πx), v0(x) = v∗ + 0.6cos(4πx); bottom the initial values
u0(x) = u∗ − 0.2cos(4πx), v0(x) = v∗ − 0.6cos(4πx)

0, when h(5)s (0, 0) �= 0 of which the tedious calculation is omitted here, there are
same results as hsss(0, 0) �= 0. Thus, the system (2.1) has at least two non-constant
steady state solutions in a neighborhood of the simple bifurcation point d j , which
complements Theorem 2.4.

5 Numerical simulations

This section aims to illustrate the analytic results of the previous sections. The initial-
boundary-value problem (2.1) is performed numerically by use of a standard implicit
method, based on the Crank-Nicholson scheme. Here, we transform the spatial domain
from 0 < x < l to 0 < x̂ < 1 by putting x̂ = x/ l, and still denote x̂ by x in the
numerical simulations.

We choose the same parameter values as for Fig. 1, namely α = 2.7034 and
l = 13.3, leading to that all the bifurcation points are d4 = 1.8768 < d3 = d5 =
2.3227 < d2 = 4.1980 < d1 = 14.8809 < d6 = 39.8377. This shows that d̃ = d4
(i.e. m = 4 in Sect. 4) and the first bifurcation point is d4 = 1.8768. For these parameter
values, the constant solution (u∗, v∗) is equal to (2.7034, 8.3084). Taking δ = 9.7607,
Fig. 3 is devoted to demonstrate the constant solution is stable for d = 1.75 < d̃
which justifies the Lemma 2.2. In Fig. 4, for d = 2.0 > d4, the stable spatially
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nonhomogeneous steady states with mode 4 form, as predicted in Theorem 4.3, here
hsss(0, 0) < 0 for j = m = 4 in (4.5).
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